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Abstract. For both cases with and without interactions, bipartite entanglement of two fermions from
a Fermi gas in a trap is investigated. We show how the entanglement depends on the locations of the
two fermions and the total particle number of the Fermi gas. Fermions at the edge of trap have longer
entanglement distance (beyond it, the entanglement disappears) than those in the center. We derive a lower
limitation to the average overlapping for two entangled fermions in the BCS ground state, it is shown to
be

√
Q/2M , a function of Cooper pair number Q and the total number of occupied energy levels M .

PACS. 03.67.Mn Entanglement production, characterization, and manipulation – 03.65.Ud Entanglement
and quantum nonlocality – 05.30.Fk Fermion systems and electron gas – 74.20.Fg BCS theory and its
development

As one of the most characteristic features of quan-
tum systems, quantum entanglement lies at the heart of
the difference between the quantum and classical multi-
particle world. It is the phenomenon that enables quan-
tum information processing and quantum computing [1,2].
Quantum entanglement is usually considered as existing
between different degrees of freedom of two or more par-
ticles with mutual interactions, it is only recently that re-
searchers have started to investigate entanglement in sys-
tems containing a large number of particles, in particular
in a noninteracting Fermi gas [3–6]. Entanglement seems
to play a crucial role in condensed matter systems, and has
shown of relevance to thermodynamical quantities [7] such
as the degeneracy pressure [8] and the number density of
the gas [5], multipartite entanglement is also promising to
make a breakthrough in solving unsolved problems such
as high-Tc superconductivity [9].

Entanglement for noninteracting Fermi gases in a free
space has already been studied [3–5]. It was found that all
entanglement vanishes if the relative distance |r − r′| be-
tween electrons is greater than the entanglement distance
1/kF , where kF denotes the Fermi momentum. In this
situation, quantum entanglement is purely due to Fermi
statistics and not due to any physical interactions. A nat-
ural question then arises, is this a general property of non-
interacting Fermi gases? or it is special for the Fermi gas
in a free space, and how the inter-particle interactions in-
fluence the entanglement?

In this paper, we will try to answer this question
by studying the entanglement in noninteracting Fermi
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gases in a harmonic trap, and examining the effect of
inter-fermion interactions on the entanglement. As will
be shown, bipartite entanglement measured by Wootters
concurrence depends not only on the relative distance be-
tween the two fermions but also on the total number of
particles in the gas, the larger the particle number of the
gas N , the shorter the entanglement distance. The entan-
glement distance is no longer a constant 1/kF (depending
on the particle density) as in free space, it is related to
locations of the two fermions. Our numerical simulations
show that the entanglement distance is longer at the edge
more than that at the center of trap. Further, we show
the effect of interactions on the bipartite entanglement
for the Fermi gas. The model adopted is the reduced BCS
Hamiltonian, it is shown that the bipartite entanglement
of BCS ground state depends on the overlapping of the
time-reversed states, the minimum average overlapping is√
Q/2M depending on the ratio of Cooper pair number Q

to the total number of occupied energy levels M . These
results clearly establish the fact that entanglement should
be taken into account when studying macroscopic observ-
able, even if the system is in its ground state and the con-
stituents of the system are not coupled with each other.

Suppose we have a collection of noninteracting
fermions in harmonic traps. The Fermi gas may be elec-
trons in a metal or ultracold atoms. Unless stated oth-
erwise, we treat the Fermi gas in this paper as ultracold
atoms, but the representation is applicable for all Fermi
gases. At zero temperature, the atom gas is in its lowest
energy configuration. All energy states are occupied up
to the level M = N/2, where N is the total number of
atom and assumed to be even (the case with odd number
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of particles will be discussed at the end of this paper).
For simplicity, we consider throughout this paper a one-
dimensional harmonic trap. This condition is met if the
trapping frequencies in the other directions are consider-
ably large. The ground state of this system is

|Ψ0〉 =
M∏

n=1

b†n↑b
†
n↓|V ac〉, (1)

where |V ac〉 denotes the vacuum, and b†nσ(σ =↑, ↓) creates
an atom in state φn(x) with spin σ. We are interested in
entanglement between two atomic spins at different loca-
tions. To solve this problem, the density matrix describing
the spin state of two atoms at locations x and x′ is needed.
It can be defined by [3]

ρss′;tt′ = 〈Ψ0|ψ†
t′(x

′)ψ†
t (x)ψs′ (x′)ψs(x)|Ψ0〉, (2)

where ψ†
t (x) creates an atom of spin t at location x. This

definition is reasonable, because the normalized second
order correlation function can be considered as quantum
states from the viewpoint of quantum measurement [6].
This density matrix also may be calculated by

ρss′;tt′ = Tr(|Ψ0〉〈Ψ0| · |st(x)〉〈s′t′(x′)|), (3)

with |st(r)〉 standing for the two-atom state with spins s
and t at location r. Writing ψs(t) in terms of the an-
nihilation operator bnσ and eigenfunctions φn(x) of the
harmonic oscillator, we obtain the density matrix in the
following form,

ρss′;tt′ = N(x)N(x′)δtsδt′s′ − δts′δt′sF
2(x, x′), (4)

where F (x, x′) =
∑M

α φ∗α(x′)φα(x) = F , N(x) =∑
α |φα(x)|2 = Nx. Term F represents a sum over overlap-

ping of the two atoms at locations x and x′, respectively.
N(x) is the number density of atom at location x. In basis
{| ↑↑〉, | ↑↓, | ↓↑〉, | ↓↓〉}, the density matrix takes the form,

ρ12(x, x′) =
1

4NxNx′ − 2F 2

×

⎛

⎜
⎝

NxNx′ − F 2 0 0 0
0 NxNx′ −F 2 0
0 −F 2 NxNx′ 0
0 0 0 NxNx′ − F 2

⎞

⎟
⎠ , (5)

where the subscript 1, 2 denotes the index of the two
atoms. The entanglement of formation [10] measured by
Wootters concurrence can be given by

C12(x, x′) =
2

|4NxNx′ − 2F 2|max
{
2F 2 −NxNx′ , 0

}
.

(6)
Obviously, the Wootters concurrence C12 is maximal when
x = x′ and it equals to 1. The corresponding entangle-
ment state is the spin singlet 1/

√
2(| ↑↓〉 − | ↓↑〉). With

the relative distance between the two atoms increasing,
F 2 behaves as a damping function of |x− x′|. As a conse-
quence, the entanglement decays with |x− x′| increasing,
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Fig. 1. (Color online) Wootters concurrence of two atoms
located at x and x′, respectively. The figure was plotted for
20 trapped atoms. α =

√
mω/�, m is the mass of atom, and

ω is the trapping frequency.

this was shown in Figure 1, where the bipartite entangle-
ment in a system with 20 atoms was plotted as a function
of locations x and x′. The entanglement arrives at the
maximum 1 at points |x−x′| = 0 and decays as atom sep-
aration increases from the Pauli exclusion principle. This
can be understood as a result of more and more triplet
states mixed in with the singlet. In contrast with the en-
tanglement between two fermions in a free space, the en-
tanglement between the two in a harmonic trap appears
to be location dependent. It is clear from Figure 1 that
the entanglement distance is longer for atoms at the edge
of the trap than that at the center [11]. The reason for
this is the following. The bipartite entanglement roughly
depends on how and how many triplet state are mixed
in with the singlet. At points |x − x′| = 0, there are no
triplet states involved in from the Pauli exclusion, so the
bipartite entanglement is maximal at these points. With
the atom separation increasing, more triplet states are in-
volved in, the two atom state is then a weighted sum over
the singlet and triplet states, the weights depend on the
locations of atoms. Because the overlapping of the wave-
function for atoms in the center is on average larger than
that at the edge, the weights at the edge benefit the entan-
glement. The bipartite entanglement also depends on the
total number of atoms, as shown in Figure 2, where one
atom was located at 0.5α, α =

√
mω/�, m is the mass of

atom, and ω stands for the trapping frequency. Clearly, the
larger the number of atoms, the faster the damping of the
bipartite entanglement. This results can be understood
by considering F (x, x′), which represents a sum over the
overlapping of atom states at x and x′. F (x, x′) is propor-
tional to the probability transfer of an atom from location
x to x′ (vice versa), it decreases with the atom number
growing, and finally tends to the δ-function in the ther-
modynamical limit [12]. We would like to notice that the
dependence of the entanglement on local particle density
is involved. At first sight the entanglement decreases with
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Fig. 2. (Color online) The bipartite entanglement as a function
of the second atom’s location x. (a–e) are for different total
number of atoms. The number corresponding to (a), ..., (e) is
2, 4, 10, 14, 18, respectively.

the local particle density growing, however, this is not the
case because F (x, x′) depends on the local particle density
through φα(x) and φα(x′), too.

Up to now, we have not considered any interaction be-
tween the atoms. In the following, we study how the inter-
action influences the entanglement of the two atoms. For
repulsive interactions, perturbation theory tells us that
weak interactions modify the eigenvalues and the cor-
responding eigenfunctions of the free Hamiltonian, this
results in a level shift to every eigenstate of the free
Hamiltonian, and consequently there are more eigenfunc-
tions participating in the summation for F , Nx, and Nx′ .
So, the damping in the dependence of entanglement on the
relative distance would be faster than that without inter-
actions. For attractive interaction, we will investigate the
entanglement in trapped atoms by using the reduced BCS
model. The reduced BCS Hamiltonian has received much
attention as a result of effort to understand pairing cor-
relations in nanoscale metallic system [13,14]. We assume
the model Hamiltonian in our consideration is [15],

HBCS =
M∑

j=1

εjnj − dλ
M∑

j,k

b†j+b
†
j−bk+bk−, (7)

where j, k = 1, ...,M represent a set of doubly degenerate
single particle energy levels with energies εj and cor-
responding wavefunctions φj(x), λ is the dimensionless
coupling, and d is the mean level spacing. bj±(b†j±) rep-
resents the annihilation (creation) operator for atoms at

level j with the labels ± referring to a pair of time-reversed
states, and nj was defined as nj = b†j+bj+ +b†j−bj−, which
is the atom number operator for level j. The ground state
entanglement (called ALC — average local concurrence)
shared among different energy levels in this model was
investigated in [16], it shown a simple relation between
the ALC and the key order parameters in this model.
The conventional BCS theory employs a grand canoni-
cal ensemble, by the Bogoliubov transformation γj1 =
ujbj+ − vjb

†
j−, γj0 = ujbj− + vjb

†
j+, with u2

j + v2
j = 1,

4u2
jv

2
j = ∆2/(ε2j + ∆2), and ∆ = λd

∑M
j=1〈bj−bj+〉, it

gives

HBCS =
∑

j

[
εj

(
u2

j − v2
j

) − 2∆ujvj

] (
γ†j1γj1 + γ†j0γj0

)

+ constant. (8)

In this situation, the pair of time-reversed states would
play the same role as the spin in the discussion for
free atoms, we hence consider entanglement between two
atoms in the two time-reversed states + and −. The den-
sity matrix representing this entangled state can be rep-
resented by

ρBCS
ss′;tt′ = Tr(|BCS〉〈BCS||st(x)〉〈s′t′(x′)|), (9)

where |BCS〉 is the well-known ground state in the BCS
model, |BCS〉 =

∏M
j=1(uj+vjb

†
j+b

†
j−)|0〉, s, t, s′, t′ = +,−.

By the standard procedure, equation (9) yields,

ρBCS
ss′;tt′ =

⎛

⎝
∑

j

|vj |2
⎞

⎠

2

δtsδt′s′ − δts′δt′s

× Re(f(x, x′)v2(x, x′)), (10)

where

f(x, x′) =
∑

j

φj(x)φ∗j (x
′),

v2(x, x′) =
∑

j

v2
jφ

∗
j (x)φj(x′). (11)

Here, Re(...) denotes the real part of (...). In basis
{|++〉, |+−〉, | −+〉, | −−〉}, the density matrix in equa-
tion (9) follows,

see equation (12) below.

Here f ≡ f(x, x′) and v2 ≡ v2(x, x′). As well-known,∑
j v

2
j equals the total number of Cooper pairs Q in state

|BCS〉, while f characterizes the overlapping of the two

ρBCS
12 (x, x′) =

1
4[

∑
j v

2
j ]2 − 2Re(fv2)

⎛

⎜
⎜
⎝

[
∑

j v
2
j ]2 − Re(fv2) 0 0 0

0 [
∑

j v
2
j ]2 −Re(fv2) 0

0 −Re(fv2) [
∑

j v
2
j ]2 0

0 0 0 [
∑

j v
2
j ]2 − Re(fv2)

⎞

⎟
⎟
⎠ (12)
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particles’ wavefunctions. The state (12) is entangled iff
the Peres-Horodecki condition [17] is met, i.e., 2Re(fv2)−
Q2 > 0. Assume φ∗j (x)φj(x′) = y independent of x,
x′ and j, the Peres-Horodecki condition leads to |y| >√
Q/2M (

√
Q/2M ≤ 1/

√
2). This is the restriction to

the overage overlapping for bipartite entanglement. With
the assumption φ∗j (x)φj(x′) = y, it is easy to write
down the concurrence corresponding to state (12) as
CBCS

12 (x, x′) = max{ (2|y|2−Q/M)
(2Q/M−|y|2) , 0}. The maximal entan-

glement CBCS
12 (x, x′) = 1 is obtained at |y|2 = Q/M. For

conventional BCS states, φj(x) may have the form of eipjx,
choose x = x′, |y| = 1 > 1/

√
2. So two electrons in the

conventional BCS state are entangled as long as the sep-
aration L is less than the entanglement distance deter-
mined by |φ∗j (x)φj(x+L)| = |y| =

√
Q/2M . For atoms in

a harmonic trap, we may write the wavefunctions φj(x)
(j = 1, ...,M) as eigenvectors of the harmonic oscillator
Hamiltonian. In the case of Q = M , i.e., all atoms are
paired, the maximal entanglement that we may obtain in
this system is less than 1, because |φ∗j (x)φj(x′)| < 1 for
any j, x and x′. This is the difference in entanglement be-
tween interacting atoms in free space and in traps.

We now consider the case when the total number
of particles is odd. Intuitively, for a large number (say,
2N + 1) of atoms, the bipartite entanglement would be-
have like that with 2N particles. This is the case indeed
as will be shown. Let us first analyze the case without
inter-particle interactions. Assume the (2N+1)th atom is
of spin up, the state of these 2N+1 atoms may be written
as b†M+1↑|Ψ0〉, where |Ψ0〉 was defined by equation (1) for
the 2N particles. Following the calculation performed for
equation (5), we find that the density matrix ρ12(x, x′)
can be divided into two parts, the first represents contri-
butions from the 2N atoms, which takes the same form as
in equation (5), and the second is a correction due to the
(2N +1)th atom. The elements of the second state σ are,

σ22 = 2Nx|φM+1(x′)|2 + 2Nx′|φM+1(x)|2,
σ23 = −4F (x, x′)φ∗M+1(x)φM+1(x′), (13)

σ11 = σ22 + σ23, σ22 = σ33, σ32 = σ∗
23, and the others

are zero. For a large system (N � 1), |φM+1(x)|2 	 Nx,
and |φM+1(x)φM+1(x′)| 	 |F (x, x′)|. Therefore, the cor-
rection σ to the density matrix ρ12(x, x′) can be neglected.
However, this is not the case if the system only consists
of few atoms, the correction due to the (2N + 1)th atom
should be taken into account to compute the bipartite
entanglement. Note that exchanges of spin up with spin
down do not change |Ψ0〉, but b†M+1↑|Ψ0〉. So matrix σ

is of relevance to the spin of the (2N + 1)th atom. But
this does not affect the bipartite entanglement under con-
sideration, i.e., the bipartite entanglement is independent
of the spin of the (2N + 1)th atom. In the case of at-
tractive interaction, the situation is similar if the BCS
ground state is simply b†M+1↑|BCS〉. The situation be-
comes complicated when b†M+1↑|BCS〉 is not the ground
state of the system [18]. In order to calculate the en-
tanglement in BCS ground state, we have to find the

ground state first. Here, we analyze the effect of the un-
paired atom on entanglement by a generalized BCS-like
variational ansatz [18]. It uses a variational wavefunction
|BCS〉′ = b†M+1↑

∏M
j=1(u

′
j + v′jb

†
j+b

†
j−)|0〉 to minimize the

kinetic energy cost of having the additional atom in level
(M + 1). The variational parameters u′j and v′j must be
found independently by minimizing E =′ 〈BCS|H |BCS〉′.
The results [18] showed that the additional unpaired atom
can destroy pairing, and hence it decreases Q in our for-
mulation. By the same analysis as in the case without
inter-atom interactions, this change has negligible effects
when Q � 1, but it should be taken into account when
the number Q of pairs is small.

Before concluding, it is worth mentioning that bipar-
tite (multipartite) entanglement as a properties of quan-
tum systems depends on the definition of the two degrees
(many degrees) that share the entanglement. Some prop-
erties of entanglement in the BCS model were studied in
references [16,19,20], where the entanglement was defined
among particles in different energy levels [16]. The entan-
glement presented in this paper is for two-fermion spins at
different locations x and x′, it characterizes two-fermion’s
correlation at the two locations.

In conclusion, we have shown that the bipartite entan-
glement in noninteracting fermions trapped in harmonic
traps depend on particle number, relative distance and
the locations of the two fermions. The entanglement dis-
tance which characterize the maximum separation of two
entangled particles is longer at the edge of the trap than
that at the center; the larger the number of trapped par-
ticles, the shorter the entanglement distance. For inter-
acting Fermi system, we have adopted the reduced BCS
model to study the entanglement in the BCS ground state.
Reduced density matrix and Wootters concurrence have
been presented, the restriction on the average overlap-
ping y has been derived to be

√
Q/2M < |y| ≤ √

Q/M ,
the lower limitation

√
Q/2M corresponds to concurrence

zero, while the upper one
√
Q/M corresponds to maximal

entangled states.

We acknowledge financial support from NCET of M.O.E, and
NSF of China Project Nos. 10305002 and 60578014.

References

1. D. Bouwmeester, A. Ekert, A. Zeilinger, The physics of
quantum information, Quantum cryptography, Quantum
teleportation, Quantum computation (Springer-Verlag,
Berlin, 2000)

2. M.A. Nielsen, I.L. Chuang, Quantum computation
and quantum information (Cambridge University Press,
Cambridge, 2000)

3. V. Vedral, Centr. Eur. J. Phys. 2, 289 (2003)
4. S. Oh, J. Kim, Phys. Rev. A 69, 054305 (2004)
5. C. Lunkes, C. Brukner, V. Vedral, Phys. Rev. Lett. 95,

030503 (2005)



X.X. Yi: Entanglement of Fermi gases in a harmonic trap 469

6. D. Cavalcanti, M.F. Santos, M.O. Terra Cunha, C. Lunkes,
V. Vedral, Phys. Rev. A 72, 062307 (2005)

7. V.E. Korepin, Phys. Rev. Lett. 92, 096402 (2004)
8. C. Lunkes, C. Brukner, V. Vedral, Phys. Rev. A 71, 034309

(2005)
9. V. Vedral, New J. Phys. 6, 22 (2004)

10. W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1997)
11. In the light of well-established and elementary many-body

physics, this can be understood as follows. For a free Fermi
gas in one spatial direction, the particle density n and the
Fermi momentum kf are related via n = 2kf/π. Thus, the
larger the density, the larger kf , and in turn, the shorter
the entanglement distance. Also the observation that the
entanglement between two particles depend on both their

coordinates and not just on their diffenence, is an conse-
quence of the lack of translational symmetry in the har-
monic trap.

12. R.K. Pathria, Statistical mechanics (Elsevier, 2001)
13. J. Dukelsky, G. Sierra, Phys. Rev. B 61, 12302 (2000)
14. J. von Delft, D.C. Ralph, Phys. Rep. 345, 61 (2001)
15. J. von Delft et al., Phys. Rev. Lett. 77, 3189 (1996)
16. C. Dunning, J. Links, H.Q. Zhou, Phys. Rev. Lett. 94,

227002 (2005)
17. A. Peres, Phys. Lett. A 202, 16 (1995)
18. F. Braun et al., Phys. Rev. Lett. 79, 921 (1997)
19. S. Dusuel, J. Vidal, Phys. Rev. A 71, 060304 (2005)
20. M.A. Martin-Delgado, e-print arXiv:quant-ph/0207026


